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Abstract—It has been known that multi-robot localization
is superior to single-robot localization in terms of localization
accuracy. However, there is no work clearly examining why
and how multi-robot cooperation achieves this in the context of
optimization based methods. This paper studies a constrained
optimization based multi-robot localization algorithm in the
perspective of Fisher Information Matrix to provide some novel
insights on why and how multi-robot cooperation and optimiza-
tion constraints are able to improve localization accuracy.

I. INTRODUCTION

Multi-robot localization (MRL) is to provide pose estimate
for a robot team and, more importantly, improve its accuracy
by sharing information [3]. It has been known that MRL
is superior to single robot based localization in terms of
localization accuracy [1]. However, it is not clear why and
how the multi-robot cooperation achieves this in the context
of optimization although optimization based methods are very
popular to solve the MRL problem.

Many MRL systems have practical limitations (e.g., feasible
operating area) on states and disturbances, which can be
considered as constraints. However, few MRL algorithms
consider these constraints. In the field of estimation, it has
been acknowledged that incorporating constraints can improve
results [2]. Therefore, it is natural to ask why and how the
constraints are able to benefit MRL.

In this paper, these two questions are explicitly answered in
the perspective of Fisher Information Matrix (FIM), providing
some novel insights on MRL systems.

II. METHOD

In a MRL system, N robots and a single mobile beacon
cooperate with each other. They can measure ranges between
each other. The neighborhood set of robot i at time t is
represented as Nit with size nit . The process model of the
ith robot at time t is

xit+1 = f(xit , ûit ,wit)

where ûit is robot motion, wit ∼ N (0,Qc
it) is an additive

Gaussian noise, Fit and Git are the Jacobian matrices with
respect to xit and wit , respectively. The range measurement
of robot i to robot q (or beacon xbt ) is

ziq
r,t = hr(xit ,xqt) + viq

r,t, q ∈ Nit

where viq
r,t ∼ N (0,Riq

r,t). We denote iHiq
r,t and qHiq

r,t as the
Jacobian matrices with respect to xit and xqt , respectively.
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(a) beacon only.
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(b) All ranges.
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(c) beacon only.
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(d) All ranges.

Fig. 1. H and D in different situations at step 2. (a) and (b) are H, while
(c) and (d) are D. The dashed square indicates a time slot.

The Maximum a Posteriori (MAP) based MRL algorithm with
constraints is

minimize
{xt}k0

Φr({xt}k0) + Φp({xt}k0) + Φ0({xt}k0)

subject to gl(x,u,w) � dl, l = 0, · · · ,m
(1)

where

Φr({xt}k0) =

k∑
t=0

N∑
i=1

∑
q∈Nit

‖ziq
r,t − hr(xit ,xqt)‖

2

R
iq
r,t

Φp({xt}k0) =

k−1∑
t=0

N∑
i=1

‖xit+1 − f(xit , ûit)‖
2
Qit

Φ0({xt}k0) =

N∑
i=1

‖xi0 − x̂i0‖
2
Πi0

xt =
[
xT
1t , . . . ,x

T
it
, . . . ,xT

Nt

]T
, ‖p‖2A = pTA−1p, Qit =

GitQ
c
itG

T
it , N (x̂i0 ,Πi0) is prior knowledge on the initial

state of robot i, zr,i is all the range measurements at time
t, and {·}ba denotes a set of quantities from time a to b.

When the optimization problem (1) is iteratively solved, in
each iteration we have the following problem after lineariza-
tion:

minimize
{∆xt}k0

Φ({∆xt}k0)

subject to G∆x0:k � d
(2)

where

Φ({∆xt}k0) =

k∑
t=0

N∑
i=1

∑
q∈Nit

‖ciq
r,t −

i Hiq
r,t∆xit −

q Hiq
r,t∆xqt‖

2

R
iq
r,t

+

k−1∑
t=0

N∑
i=1

‖∆xit+1 − Fit∆xit − ait+1‖
2
Qit

+
N∑
i=1

‖∆xi0 − ai0‖
2
Πi0

,

and

G =

 ∇g
T
0

...
∇gTm

 , d =

 d0 − g0(x,u,w)
...

dm − gm(x,u,w)





where

ciq
r,t = ziq

r,t−hr(xit ,xqt),ait+1 = f(xit , ûit)−xit+1 ,ai0 = x̂i0−xi0

Then, Φ({∆xt}k0) can be rewritten as

Φ({∆xt}k0) = ‖C(A∆x0:k − b)‖22

where

C =

[
Q− 1

2

R− 1
2

]
, A =

[
F
H

]
, b =

[
a
c

]
Q− 1

2 = diag
(

Π
− 1

2
10

, · · · ,Π−
1
2

N0
,Q
− 1

2
10

, · · · ,Q−
1
2

Nk−1

)
R− 1

2 = diag
(

R1b
r,0

− 1
2 ,R12

r,0
− 1

2 , · · · ,R(N−1)N
r,k

− 1
2

)
F = I +

[
0(6·N)×(6·N·k) 0(6·N)×(6·N)

diag
(
−F10 , · · · ,−FNk−1

)
0(6·N·k)×(6·N)

]
H = diag (H0, · · · ,Ht, · · · ,Hk)

Ht =


1H1b

r,t
1H12

r,t
2H12

r,t

· · · · · · iHiq
r,t · · · qHiq

r,t

...
...


(
∑N

i=1 nit)×(6·N)

a =
[

aT
0 · · · aT

k

]T
at =

[
aT

1t
aT

2t
· · · aT

Nt

]T
c =

[
cT

0 · · · cT
k

]T
ct =

[
c1b
r,t

T
c12
r,t

T · · · cjq
r,t

T · · ·
]T

diag(·) is a function to map vectors to a block diagonal matrix.
The Lagrangian of (2) is

L(∆x0:k,λ) =
1

2
Φ({∆xt}k0) + λT (G∆x0:k − d)

where λ ∈ RK ,K =
∑m

l=0 kl,. Then, the KKT conditions of
the optimization problem (2) are given by

∇∆x0:kL = (FTQ−1F + HTR−1H)∆x0:k

− (HTR−1c + FTQ−1a) + GTλ = 0

diag(λ)(G∆x0:k − d) = 0

(3)

Therefore, Newton step for solving (3) is given by[
(FTQ−1F + HTR−1H) GT

diag(λ)G −diag(d− G∆x0:k)

] [
δx0:k

δλ

]
=

[
−(FTQ−1F + HTR−1H)∆x0:k + (HTR−1c + FTQ−1a) − GTλ

−diag(λ)(G∆x0:k − d)

]
(4)

Applying Schur Complement to (4), the coefficient of δx0:k

can be derived:
D = (FTQ−1F + HTR−1H)︸ ︷︷ ︸
FIM of unconstrained problem

+GT (diag(d− G∆x0:k))−1diag(λ)G︸ ︷︷ ︸
extra part

= FTQ−1F

+

[
H
G

]T [
R−1 0
0 (diag(d− G∆x0:k))−1diag(λ)

] [
H
G

]
(5)

III. RESULTS

By examining (5) in the perspective of FIM, D includes
the FIM of the unconstrained optimization problem [4] and an
extra part coming from the constraints. In fact, H represents
the structure of the multi-robot cooperation, while the extra
part is related with the constraints.
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(a) No constraints.
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(b) on robot 1.
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(c) on robot 2.

Fig. 2. D with different constraints.

1) Multi-Robot Cooperation: Assume there are two dif-
ferent situations: each robot can measure ranges to (a) the
beacon only; (b) all robots and the beacon. H and D of both
situations at step 2 are shown in Fig.1. By concentrating on the
differences between Fig.1(c)-Fig.1(d), it can be seen that the
information on diagonal blocks increases. This means that as
more ranges between robots are used, the information on robot
positions increases. Moreover, there are some off-diagonal
blocks (e.g., cov(x10 ,x20)) in D that appear or become denser,
i.e., correlation between robots is introduced or increased. The
significance of the information on the diagonal is that the
covariance can be reduced in the presence of the off-diagonal
elements. Therefore, the localization accuracy can be improved
by sharing information between multiple robots.

2) Constraints: Studying (5) can also answer why and how
the constraints are useful for MRL algorithms. Fig.2 shows D
with various constraints, i.e., different extra parts in (5). The
scenario where no constraint is imposed is a standard of refer-
ence, see Fig.2(a). When there are constraints on the velocity
of robot 1, the D in Fig.2(b) shows that the states of robot 1
in different time slots can be constrained, e.g., cov(x10 ,x11)
increases. This contributed off-diagonal elements can reduce
the uncertainties as the multi-robot cooperation does. More-
over, Fig.2(c) is produced with the constraints on the states
of robot 2 only. The changes from Fig.2(a) to Fig.2(c) show
that the information (uncertainty) on state estimate of robot 2
is improved (decreased). This constraint, for instance, can be
used when there is prior knowledge on feasible operating field
of robot positions. In fact, the extra part in (5) indicates that
the constraints can be conceived as supplementary “sensors”,
which supply additional information.
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