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INTRODUCTION

The cooperative manipulation problem involves the

contribution of n robots to grasp a payload B of arbitrary

shape in order to move it, e.g., from an initial position to a

final one (see Fig. 1). The majority of the works concerning

cooperative manipulation algorithms in literature are based on

the assumption of the a priori knowledge of the geometric and

inertial parameters of the manipulated object, although this

assumption is not always verified in real world scenario. To

cope with this issue, we propose a novel distributed algorithm

for the estimation of the grasping and inertial parameters of

an unknown load [1].

PROBLEM STATEMENT

We consider a load modeled as a planar rigid body, whose

center of mass is denoted with C. The load is manipulated

by a group of n mobile robots, where each robot can exert a

force on a contact point Ci. Consider a planar reference inertial

frame W = {OW − xW yW} and denote with pC ∈ R
2 the

position of C in W , with pCi
the position of Ci in W and

with fi the force applied by the i-th robot at Ci and expressed

in W , where i = 1, . . . , n. The dynamical model of the load

B is therefore the following:

p̈C =
1

m

n
∑

i=1

fi (1)

ω̇ =
1

J

n
∑

i=1

(pCi
− pC)

⊥T
fi, (2)

where m > 0 is the mass of B, ω ∈ R is its angular velocity,

J > 0 is its moment of inertia, and the operator (·)⊥ is

the linear operator, that, given a generic vector v ∈ R
2,

v = (vx vy)T , provides the perpendicular vector v⊥ =
(vy − vx)T . Each robot is able to control the force applied to

the load and to measure the velocity of the force contact point.

Furthermore, robots are able to communicate via a one-hop

wireless network.

THE ALGORITHM

The aim of the algorithm is to estimate the inertial

parameters of the load, such as the mass, the moment of

inertia, and the position of the contact points with respect to

the center of mass, in order to improve the performance of

the control strategy. The estimation of the latter requires the

estimation of the relative positions of the contact points and

of the center of mass relative to the geometric center of the

contact points. A fundamental assumption is that each robot

Figure 1: Cooperative manipulation: the estimation setup.

cannot measure the position of any contact points, nor their

accelerations. The algorithm consists of 7 steps.

Step 1: As a preliminary step, each robot uses the

measurement of its own velocity and that of its neighbors

(received over the communication network) in order to obtain,

in a distributed fashion, an estimate of the relative positions

of the contact points.

Step 2: In the second step, each robot uses the relative

position measurements to compute, using the algorithm in [2],

the relative position between the contact point and the

geometric center of all the contact points.

Step 3: Then, each robot computes, locally, the angular

velocity of the load on the basis of the relative positions of

the contact points and the velocities of the contact points of

its neighbors.

Step 4: Thus, each robot applies a suitably computed force

and observes the angular velocity of the payload. By means

of an average consensus algorithm [3], each robot knows the

value of the sum of the applied forces. This allows each robot

to reach an estimate of the moment of inertia.

Step 5: In the fifth step, each robot applies the same

constant nonzero force and measures the angular velocity. In

order to agree on the same value of the applied force, a suitable

consensus protocol is used. Then, it is possible to prove [1]

that the estimation of zC = pC − pG, i.e. the position of the

center of mass relative to the geometric center of the contact

points, is equivalent to observe the state of
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ẋ1 = −x2x3

ẋ2 = x1x3

ẋ3 = x1f̄y − x2f̄x + η

y = x3,

(3)
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Figure 2: Estimation errors of the distances between neighbors.

where we let zxC = x1, z
y
C = x2, ω = x3. Moreover, it is

possible to prove [1] that the following dynamical system

˙̂x1 = −x̂2x3 + f̄y(x3 − x̂3)

˙̂x2 = x̂1x3 − f̄x(x3 − x̂3)

˙̂x3 = x̂1f̄y − x̂2f̄x + ke(x3 − x̂3) + η,

(4)

is an asymptotic observer for system (3). Then, each robot

is able to obtain an estimate that eventually converges to the

time-varying vector zC , by means of the observer together

with the estimated moment of inertia.

Step 6: At this time, each robot is able to compute the

position of the contact points relative to the center of mass.

Then, the velocity of the center of mass can be computed

locally by any robot.

Step 7: In the last step, each robot applies the same constant

nonzero force and measures the velocity of the center of mass.

In order to agree on the same value of the applied force, a

suitable consensus protocol is used. This allows each robot to

agree on an estimate of the payload mass.

Further information can be retrieved in [1]. Moreover, the

effect of noise on the algorithm is accounted for in [4], where

an approach based on Least Squares filters is used.

SIMULATION RESULTS

We test the proposed algorithm by means of numerical

simulations. We simulate a rigid body of mass m = 5 kg

and a moment of inertia J = 8.6891 kg m2 manipulated

by n = 4 mobile robots. We assume that the robots can

exchange information over a line topology network. The

measurement noise is assumed to be Gaussian with zero mean

and covariance matrix Σi = σ2I, with σ = 0.2 m/s, and

where I ∈ R
2×2 is the identity matrix. The trend of the

estimation error of the relative distances between the contact

point is depicted in Fig. 2, while the observation of the

time-varying position of the center of mass relative to the

geometric center of the contact points is given in Fig. 3.

The result of the estimation of the mass and of the moment

of inertia are reported in Fig. 4. It is evident as each robot

of the network converges to the same value, respectively,

m̂ = 4.8517± 0.0113 kg and Ĵ = 8.7183± 0.0004 kg m2.

FUTURE WORK

Future work will focus on two main topics: the

extension of the proposed approach to the 3D case

(for real-world manipulation applications using aerial or

underwater multi-robot systems), and the design and
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Figure 3: Observation of the vector zC and of the angular rate ω.
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Figure 4: Estimation (a) of the mass m and (b) of the moment of
inertia J .

implementation of manipulation control strategies based on the

distributed estimation of the inertial parameters. The proposed

algorithm is not suitable to the 3D case. Indeed, the transition

to the 3D case involves a problem of scale due to the use of

differences in velocity measurements, i.e, the vector resulting

from the difference of two velocities in the 3D case can not be

associated unequivocally to a given value of distance between

two points (as we assume in the Step 1 of the aforementioned

procedure). Due to this different problem setting, the design

of a novel procedure is a challenging and interesting problem.

The knowledge of the inertial parameters is a prerequisite in

order to be able to perform cooperative control algorithms

for manipulation. The benefits provided by on-line estimation

techniques are twofold: first, effective control techniques for

manipulation, like force control and pose estimation, can be

applied in order to achieve better performance with a reduced

control effort; second, manipulation of loads with time-varying

characteristics can be achieved (for instance, in transport

application it is not rare that the payload is increased by

an external cause, or that part of the load is lost during the

transportation). Thus, the design and implementation of novel

distributed cooperative control technique, such as adaptive

control approaches as well as event-driven control algorithms,

will be achieved exploiting the effectiveness of the real-time

estimations.
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