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I. EXTENDED ABSTRACT

Teams of networked robots, i.e. multiple autonomous robots connected one to the others via a communication network,

have been object of widespread research in the last years mainly because of their flexibility and robustness. A relevant part

of the research in the field deals with the distributed control of such systems [1], since a decentralized control strategy is

often a desirable feature and, sometime, the only one possible; this might be due to limited computation power and/or limited

communication bandwidth, that make impossible the communication between a central unit and all agents in the team.

With regards to common problems in the framework of multi-agent systems, several authors have proposed solutions to

consensus as in [2], [3]. Furthermore, in [4] the authors propose a partially decentralized algorithm to control the network

centroid, variance, and orientation of the system. Some of the authors of this paper devised in [5] an observer-controller

scheme for the distributed tracking of time-varying global task variables.

In this abstract, the authors describe a solution to the fault tolerant control of distributed multi-robot systems that builds

on results in [5]. In fact, the robustness to faults of multi-agent systems is only potential and the failure of one or more units

might jeopardize the all mission. The lack of a central unit and, then, of information about the overall system makes difficult

the task of detecting and identifying faulty units. Therefore, although several FDI approaches have been presented in the last

decades for single unit systems, both for continuous [6] and discrete-time systems [7], only few works dealt with the case of

decentralized multi-agents systems.

For example, observer-based FDI approaches have been proposed for distributed systems as in [8] and [9], where a bank

of adaptive observers, using only measurements and information from neighboring subsystems, are used to detect and isolate

faults in interconnected subsystems. In [10], a FDI approach for distributed and heterogeneous networked systems is proposed,

where each agent can detect and isolate both its own faults and the faults of its nearest neighbors.

In previous works [11], [12], some of the authors of this paper proposed a distributed fault diagnosis and isolation (FDI)

approach for networked robots characterized by a continuous first order integrator dynamics, that allows each robot of the

team to detect faults occurring on any other robot, even if not directly connected.

As agents are digitally controlled and explicit communication between agents happens at discrete time instants, such an

approach has been extended to the framework of discrete-time systems, where each agent is characterized by a general

discrete time linear model subject to a general state feedback input. In the designed strategy;

• each agent runs a distributed discrete-time local observer to estimate the overall state of the system. Based on this

estimate, it is possible to compute the local control input;

• based on the same information needed by the local observer, each agent computes a residual vector relative to the other

teammates;

• these residuals are designed in such a way that if a fault occurs on the corresponding agent, they overcome a proper

designed threshold. In this way, a fault relative to an agent can be detected and isolate by all the team members;

• once faults are identified, the mission is rescheduled accordingly.

A rigorous analysis and conditions on the observer convergence and on the residual dynamics was carried out.

The dynamics of each agent in the team composed by N agents is assumed to be

xi(k + 1) = Axi(k) +B (ui(k) + φi(k)) + ζi(k), (1)

with, k ∈ Z , i = 1, 2, . . . , N , and where xi(k) ∈ IRn, ui(k) ∈ IRp, are, respectively, the agent’s state and control input,

φi ∈ IRp is an actuator fault, that is zero in healthy conditions, and ζi ∈ IRn is the process noise. The local control input of

the system in (1) would be
iû(k) = Γ iK

ix̂(k) + uff (k), (2)
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Fig. 1. The vehicle paths. Red bullets represent the starting points, black bullets the ending points and continuous lines the vehicle paths. The black
pentagon represents the formation at k = 120, the black square at k = 340 and the black triangle at k = 600. kf,1 and kf,5 are the fault instants affecting
vehicle 1 and 5, respectively.

where Γ i is a selection matrix, ix̂(k) is the estimate of the state of the overall system made by i th agent, K ∈ IRpN×Nn is

a positive definite constant gain matrix, and uff (k) ∈ IRpN×Nn represents a feed-forward term.

As an example, let us consider case of a team composed by 5 vehicles that has to move in the 3D space while keeping a

regular formation. Each agent has a second order continuous dynamics:

ẋ(t) = I3 ⊗Acx(t) + I3 ⊗Bcu(t) (3)

where

x =
[

x, ẋ, y, ẏ, z, ż
]T

,

u =
[

ux, uy, uz

]T
, (4)

Ac =

[

0 1
0 0

]

Bc =

[

0
1

]

.

If a digital controller is adopted to control the system (3), the input u(t) is updated at fixed sampling time T and maintained

constant over the sampling interval by the D/A converter, i.e. u(kT + t) = u(kT )∀k ∈ Z, for 0 ≤ t < T.

Therefore, it makes sense to consider a discrete-time equivalent model of (3), namely

x(k + 1) = I3 ⊗Adx(k) + I3 ⊗Bdu(k), (5)

where kT has been replaced by k and

x(k) = [x(kT ) ẋ(kT ) y(kT ) ẏ(kT ) z(kT ) ż(kT )]
T
,

u(k) = [ux(kT )uy(kT )uz(kT )]
T
, (6)

Ad =exp(AT )=

[

1 T
0 1

]

, Bd=

∫ T

0

exp(A(T−τ ))Bdτ=

[

T 2/2
T

]

.

During the mission, actuator faults occur on vehicles 1 and 5 at steps k = 180 and k = 432, respectively. In Fig. 1, the

vehicle paths are depicted together with the instants at which the faults start affecting vehicle 1 and 5. With regards to

the fault detection and isolation, Fig. 2 shows the residual norms (blue continuous lines) and the corresponding thresholds

(dashed green line) relative to a healthy vehicle (namely vehicle 2 as an example) as calculated by the other ones (
∥

∥

ir2

∥

∥,

i = 1, 2, 3, 4). As it can be seen, residual norms are at any instant below the corresponding thresholds and, thus, no fault is

correctly detected. Figures 3 show how fault on vehicle 1 affects the residual components (relative to it) of all the teammates.

In detail, the residual norms
∥

∥

ir1
∥

∥ (i = 1, 2, 3, 4, 5) quickly overtake the thresholds few steps after the fault occurrence,

making the faults correctly detected by the team. The same happens for vehicle 5.
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Fig. 2. Residuals
∥

∥

i
r2

∥

∥ (i = 1, 2, 3, 4, 5) (solid blue lines) as calculated by vehicle i and relative to healthy faulty vehicle 2. Dashed green lines are the
corresponding thresholds.
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